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Abstract. We have investigated the simple shear flow behavior of wormlike micelles using small-angle
neutron scattering and mechanical measurements. Ternary surfactant solutions made of cetylpyridinium
chloride, hexanol and brine (0.2 M NaCl) and hereafter abbreviated as CPCl-Hex were studied in the
concentrated regime, φ ∼ 30%. In a preliminary report (Berret et al. [16]), the discontinuity of slope
observed in the shear stress versus shear rate curve was interpreted in terms of first-order phase transition
between an isotropic state and a shear-induced nematic state (I−N transition). At the transition rate,
γ̇ = γ̇I−N, the solution exhibits a macroscopic phase separation into viscous and fluid layers (inhomogeneous
shear flow). Above a second characteristic shear rate, the flow becomes homogeneous again, the sheared
solution being nematic only. The neutron patterns obtained in the two-state inhomogeneous region have
been re-examined. Based on a consistent analysis of both orientational and translational degrees of freedom
related to the wormlike micelles, we emphasize new features for the I−N transition. In the present paper,
the shear rate variations of the relative proportions of each phase in the two-state region, as well as the
viscosity ratio between isotropic and nematic phases are derived. We demonstrate in addition that slightly
above the transition rate, the shear induced nematic phase is already strongly oriented, with an order
parameter P2 = 0.65. The orientational state is that of a nematic flow-oriented monodomain. Finally,
from the locations of the neutron scattering maxima for each isotropic and nematic contributions, we
evaluate the concentrations for each phase φI and φN and derived a dynamical phase diagram of CPCl-
Hex, in terms of the stress σ versus φI and φN. According to the classification by Schmitt et al. [22], the
I−N transition observed in CPCl-Hex micellar solutions could result from a positive flow-concentration
coupling, in agreement with the observed monotonically increasing shear stress in the two-phase region.

PACS. 61.30.Eb Experimental determinations of smectic, nematic, cholesteric, and other structures –
83.50.Gd Nonlinear viscoelasticity – 64.70.-p Specific phase transitions – 82.70.-y Disperse systems

1 Introduction

Wormlike micelles results from the self-assembling of sur-
factant molecules into a locally cylindrical and elon-
gated aggregates. For these macromolecules, the contour
lengths are supposed to greatly exceed a persistence length
(∼ 200 Å). Wormlike micellar solutions have stimulated
considerable theoretical and experimental interests dur-
ing the last years because of its unique and fascinating
rheology [1,2].

In the late 80’s, attention was paid to the linear vis-
coelasticity. In the linear response region, these complex
fluids appear to be described by a simple Maxwell model.
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The low-frequency mechanical properties are determined
by a plateau modulus G0 and a unique relaxation time
τR [3–10]. The plateau modulus G0 characterizes the elas-
ticity that can be stored by the network under strain,
whereas τR describes the time scale of the relaxations
occurring in a viscous dissipation process. One of the
great success of the model imagined by Cates and cowork-
ers [11,12] was to relate this terminal time τR to a double
mechanism of relaxation in response to an externally ap-
plied strain. These authors took into account the repta-
tion mechanism for relaxation of entanglements, combined
with the reversible scission that the micellar chains expe-
rienced dynamically.

In the early 90’s, it became obvious that the nonlin-
ear mechanical properties are still more puzzling. Several
experimental reports have emphasized the existence of a
shear stress plateau observed in rate controlled experi-
ments above a characteristic shear rate (e.g. [2]). Taking
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into account the reptation and reversible relaxations men-
tioned previously, Cates and coworkers [13,14] predicted a
nonmonotonic constitutive equations for semi-dilute con-
centration range. The unstable part of the stress versus
strain rate curve was replaced by a plateau in a so-called
“top-jumping” scenario. It was assumed that as a result,
the solution splits into two macroscopic layers of different
fluidity, yielding an inhomogeneous stationary flow.

At the same time, experiments combining small-angle
neutron scattering and rheology in concentrated solu-
tions have proven that the discontinuity of slope in the
σ(γ̇)-behavior evidenced a shear-induced transition be-
tween isotropic and nematic (I−N) phases [15,16]. Flow
birefringence supported later on this picture since both
phases organized into macroscopic layers perpendicu-
lar to the gradient direction could be directly observed
[17,18]. Cates’s constitutive equation [13] and its agree-
ment with the data due to Rehage and Hoffman [2] on
one side, and the evidence of a I−N first order transi-
tion on the other are in principle not contradictory since
both are describing inhomogeneous shear flows in different
concentration ranges. Other theoretical approaches than
those mentioned above have attempted to model the ef-
fect of shear on dispersed systems of anisotropic species.
In some cases these models yield a transition toward a
nematic state [19–23].

Very recent rheological experiments on wormlike mi-
celles however have revealed completely new and re-
markable features. Grand et al. [24] have re-examined
the steady-state nonlinear rheology of the well-known
cetylpyridinium chloride / sodium salicylate solution first
discovered by Rehage and Hoffman [2]. As in concentrated
systems displaying a true shear-induced transition [9,25],
these authors observed slow transient kinetics of the shear
stress in the plateau regime, that they interpret in terms
of metastability. These new measurements, as those of ref-
erence [26] on a parent solution, seem to rule out the top-
jumping hypothesis originally postulated [13,14]. In order
to account for the two-state banded flow and the slow
transients of the band formation, Porte et al. [26] have
proposed a phenomenological explanation for the inho-
mogeneous shear flow of wormlike micelles, provided that
an effective non-equilibrium potential exists and obeys a
variation principle. The transition is obtained by mini-
mization of this potential, which considers the elastic free
energy stored in the viscoelastic fluid under steady shear.
Recent reports by Boltenhagen et al. [27] and Wheeler
et al. [28] are showing that there exists wormlike micel-
lar semidilute solutions that can first shearthinn and then
exhibit a strong shearthickening effect. In Couette flows
this thickening is concomitant to a macrophase separa-
tion of the sheared solution into turbid and transparent
domains arranged either into layers [27] or into ring-like
patterns stacked in the vorticity direction [28]. In the
present paper, we re-examine the nonlinear rheology of
concentrated wormlike micelles by combining small-angle
neutron scattering (SANS) experiments under shear and
mechanical measurements. The systems investigated here
are the ternary solutions made of cetylpyridinium chloride,

Fig. 1. (φCPCl, φHex)-phase diagram of the ternary surfac-
tant system cetylpyridinium / hexanol / brine (0.2 M NaCl)
in the low alcohol concentration range. For constant ratio R
between hexanol and CPCl, the following sequence is observed
on the dilution line: isotropic (L1) / nematic calamitic (Nc) /
hexagonal (H). Lα/ L1 denotes a biphasic region where smectic
and isotropic phases coexist. The concentrations of the phase
boundaries for solutions prepared with water and deuterated
water are compared in Table 1. The closed circles indicate the
concentrations for which the shear stress is displayed in Fig-
ure 2. The dilution line R = φHex/φCPCl = 0.14 is also shown
(dotted line in the isotropic region).

hexanol and brine (0.2 M NaCl) close to the isotropic-to-
nematic phase boundary. In our preliminary letter [16]
that will be referred to as (I) in the following, the ef-
fect of simple shear flow on wormlike micelles was ana-
lyzed in terms of a shear-induced phase transition between
isotropic and nematic states. We will do the same here. A
careful analysis of the neutron patterns in the two-state
inhomogeneous region is presented in addition. Both ori-
entational and translational degrees of freedom associated
to the wormlike micelles in shearing fields are shown to be
consistent, yielding a dynamical phase diagram and the
evidence of a flow-concentration coupling for the CPCl-
Hex system.

2 Experimental details

2.1 Sample preparation and phase diagram

The cetylpyridinium chloride is obtained by Fluka and
further purified by three recrystallisations, one in water
and two in wet acetone (T = 60 ◦C). Hexanol is also pro-
vided by Fluka but used with no further purification. For
the preparation of the brine at 0.2 M NaCl, sodium chlo-
ride is obtained from Merck and used as received, while
water was purified by passing a 4 filter Millipore 18 MΩ-
water system. This preparation procedure [29,30] of the
chemical species enables a excellent reproducibility of the
static phase diagram. The static phase diagram of this
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Table 1. List of the phase boundary concentrations for CPCl-
Hex, using H2O and D2O as solvent. Both systems are along a
dilution line fixed by the ratio between alcohol and surfactant
(R = 0.14). Here, L1 represents the disordered isotropic phase,
Nc the nematic calamitic phase and H the hexagonal one.

CPCl-Hex biphasic nematic biphasic hexagonal
R = 0.14 L1- Nc Nc Nc - H H

solvent H2O 33.7% 35.4% 38.8% 40.8%
solvent D2O 31.4% 33.0% 36.3% 38.3%

ternary surfactant system CPCl-Hex/H2O (0.2 M NaCl)
can be simplified, and described in terms of the concen-
tration in alcohol versus that of surfactant. The original
and complete (φCPCl, φHex)-phase diagram has been re-
ported in the past [29]. We are here concerned with the
low hexanol content (φHex < 10%, see Fig. 1) and in
the range where self-assembling results in locally cylindri-
cal and elongated species. With increasing concentration,
the different phases and mesophases in Figure 1 are the
isotropic phase (L1), the nematic calamitic phase (Nc) and
hexagonal phase (H). This is the typical sequence which il-
lustrates that packing of semi-flexible cylinders yields ori-
entational (Nc, H) and then translational (H) orderings.
We provide the phase boundary concentrations between
L1, Nc and H phases in Table 1, as determined for the
two solvents H2O and D2O. The micellar solutions inves-
tigated here are made at constant ratio R = φHex/φCPCl.
When speaking in terms of total concentration φ, we al-
ways mean that the sum φCPCl+φHex has to be considered.
This implicitly assumes that both cetylpyridinium and
hexanol molecules are constituting the body of the cylin-
drical aggregates in a proportion which is unchanged when
φ is increasing (e.g. on the dilution line R = 0.14 shown
by a dotted line in Fig. 1). Neutron scattering on dilute as
well as on concentrated hexagonal phases [30] confirmed
this view. The radius of CPCl-Hex wormlike micelles is
found to be remarkably constant, at rc = 21± 1 Å [30].

2.2 Rheology

The linear and nonlinear viscoelastic properties of the
CPCl-Hex solutions were obtained on a Rheometrics Fluid
Spectrometer using in a cone-and-plate (diameter 50, an-
gle 0.02 radian) and a Couette (gap 1 mm) tool devices.
Dynamical measurements (T = 30 ◦C) were carried out
for angular frequency ω = 0.1−100 rad s−1. This is a
controlled shear-rate rheometer which is particularly well-
suited to investigate this kind of shear-induced transition.
For steady shear rate measurements (again T = 30 ◦C), we
focused on the stationary limits of the stress only. Long
lasting transient responses which are typical features of
the nonlinear rheology of wormlike micelles [9,25,26] will
be detailed in a forthcoming publication on CPCl-Hex sys-
tem [31]. Note finally that an anti-evaporation device was
specially constructed for long-time measurements.

2.3 Small-Angle Neutron Scattering under shear

The SANS measurements were performed at the Orphée
Reactor at the Laboratoire Léon Brillouin1 on a CPCl-
Hex solution at concentration φ = 31.07%. The alcohol
and surfactant concentrations were φHex = 3.33% and
φCPCl = 27.74% respectively, corresponding to a mass
ratio alcohol/surfactant of 0.12. D2O was used as sol-
vent in order to enhance the scattering contrast. This
sample, though isotropic is very close to the biphasic
isotropic/nematic boundary limit found with the deuter-
ated solvent at φ = 31.4% (with however R = 0.12, see
Tab. 1). A 1 mm-gap neutron transparent Couette cell
designed for elastic scattering was utilized as shearing de-
vice [32]. Due to flow instabilities at the air/solution inter-
face, the upper accessible limit in strain rates was not more
than 250 s−1. For the measurements under steady shear,
we used a radial scattering configuration. The incoming
neutron beam (wave vector ki) passes through the cell
normal to the rotation axis, i.e. with ki‖∇v and ki ⊥ v.
Scattering patterns are recorded on a two-dimensionalXY
detector (128× 128 elements of 0.5× 0.5 cm2) located at
2 meters behind the sheared solutions, yielding the neu-
tron intensity in the (qv, qe)-plane of the reciprocal space.
Here, qv and qe are the wave-vectors parallel to the ve-
locity v and vorticity e = ∇v× v directions in real space.
Because of the relatively high surfactant concentration,
there was a risk of multiple scattering. This was checked
by using a 0.5 mm gap cell for which the final patterns
were identical. At the wavelength of λ = 6.29 Å, the
SANS experiments probed a q-range from 2 × 10−2 Å−1

to 1.7× 10−1 Å−1, with a resolution ∆q/q ∼ 0.1.

3 Results

3.1 Rheology

Wormlike micelles of CPCl-Hex are not very much vis-
coelastic. Except at the vicinity of the I−N transition,
solutions prepared in the L1-phase are all Newtonian
[29,30]. For φ ≤ φI−N, when static viscosities are in the
range 1–10 Pa s, some viscoelasticity can be observed [16].
Typical relaxation times can be estimated from the behav-
ior of the real and imaginary parts of the complex elastic
modulus (not shown here). They are ∼ 10 ms, or even
faster.

Figure 2 displays the steady state shear stress for
three CPCl-Hex solutions at φ = 20.46%, 30.70% and
φ = 32.40% on a semilogarithmic plot. These samples
are indicated by closed circles in the phase diagram of
Figure 1. With increasing concentration the nonlinear re-
sponse changes from purely Newtonian (φ = 20.40%,
η0 = 0.63 Pa s) to a behavior exhibiting two distinct flow
regimes. For φ = 30.70% and φ = 32.40%, at low strain
rates, the fluid is again Newtonian, with static viscosities
η0 = 6.1 and 10.0 Pa s, respectively. At the characteristic
strain rate γ̇I−N, the σ(γ̇)-curves exhibit a discontinuity

1 The laboratoire Léon Brillouin is a “Laboratoire commun
CEA-CNRS”
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Fig. 2. Strain rate dependencies of the mechanical shear stress
for three CPCl-Hex/H2O solutions at φ = 20.46%, 30.70% and
φ = 32.40%. Data are in steady state conditions. At low γ̇,
all fluids are Newtonian. For φ = 30.70% and φ = 32.40%,
the σ(γ̇)-data exhibit a discontinuity of slope toward a second
flow regime at the characteristic strain rate γ̇I−N. This second
region is referred to as a plateau or quasi-plateau regime. In-
set: Concentration dependence of the transition shear stress
σI−N = σ(γ̇I−N) for CPCl-Hex micellar systems close to the
static isotropic-to-nematic transition. Note that σI−N(φ) ex-
trapolates to zero shear stress at φI−N.

of slope toward a second flow regime (σ > σI−N). For the
φ = 30.70%, a true stress plateau is revealed whereas for
the φ = 32.40% solution, the stress increases further be-
yond the cross-over. In this second regime, however, one
can checked that the stress still increases according to a
power law (actually not discernible on the semilogarith-
mic plot of Fig. 2). For φ = 32.40% one gets σ(γ̇) ∼ γ̇0.26

whereas for the φ = 30.70% solution, the exponent turns
out to be 0.03. For this reason, we will refer to this second
region as a plateau or quasi-plateau regime.

A solution was prepared with deuterated brine for the
aim of neutron scattering at a total concentration φ =
31.07%. When submitted to steady shear, its nonlinear be-
havior is identical to the one described above [16]. Its rhe-
ological features at the transition Newtonian to pseudo-
plateau regime (viscosity, transition rate and stress) are
compared to those of CPCl-Hex/ H2O (0.2 M NaCl) so-
lutions in Table 2 (see Sect. 4.1. for additional details).
In the inset of Figure 2, the concentration dependence of
σI−N is displayed for the CPCl-Hex micellar system. Ap-
proaching the static Isotropic-to-Nematic transition con-
centration from below, σI−N(φ) decreases linearly with φ.
It extrapolates remarkably to zero shear stress at φI−N.
Note that the coexistence state for L1 and Nc phases is
found between φI−N = 33.7% and φ = 35.4% (open sym-
bols in the inset).

Table 2. List of the viscoelastic parameters obtained for the
surfactant ternary solutions CPCl-Hex at the transition be-
tween isotropic and nematic induced state. η0 denotes the
static viscosity, γ̇I−N the transition strain rate, σI−N the value
of the mechanical stress at the onset of the plateau regime.
The last column displays the exponent for the scaling relation
σ(γ̇) in the coexistence region.

CPCl-Hex η0 γ̇I�N σI�N exponent

(Pa s) (s−1) (Pa)

φ = 30.70% (H2O) 6.1 40 ± 1 212 0.03
φ = 32.40% (H2O) 10.0 8 ± 0.5 61 0.26
φ = 31.07% (D2O) 6.7 8 ± 1 46 0.29

Fig. 3. Two dimensional neutron scattering patterns obtained
for a CPCl-Hex solution prepared with deuterated solvent
(D2O, φ = 31.07%). Strain rates are γ̇ = 0 (Fig. 3a), 13 (3b),
32 (3c), 64 (3d), 128 (3e) and 213 s−1 (3f), respectively. The
scattered neutron intensity is recorded in the (qv, qe)-plane of
the reciprocal space (qv horizontal axis, qe vertical axis). Wave
vectors in both qv and qe-directions are between −0.16 Å−1

and +0.16 Å−1. The maximum scattering at qM = 0.0996 Å−1

attests of strong translational correlations between the micel-
lar threads. Above γ̇I−N (= 8± 1 s−1, Figs. 3b and following),
the anisotropic scattering is due to a shear-flow-induced phase
that has the orientational properties of a nematic phase.
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3.2 Small-Angle Neutron Scattering

Figures 3a–3f show the two dimensional scattering pat-
terns received from a CPCl-Hex solution prepared with
deuterated solvent (D2O, φ = 31.07%). Each spectrum
corresponds to a different shear rate, which are γ̇ =
0 (Fig. 3a), 13 (3b), 32 (3c), 64 (3d), 128 (3e) and
213 s−1 (3f), respectively. The scattered neutron intensity
is recorded in the (qv, qe)-plane of the reciprocal space,
where qv ands qe are the abscise and ordinate axes. The
full scale in both directions is for wave-vector comprised
between −0.16 Å−1 and +0.16 Å−1.

The rested solution exhibits a scattering ringlike pat-
tern (Fig. 3a) characteristic of an isotropic concentrated
micellar solution. The intensity is distributed isotropi-
cally independent on the directions in reciprocal space
and has a broad maximum at qM = 0.0996 Å−1. This
maximum attests of strong translational correlations be-
tween the micellar threads. A rough estimate of the dis-
tance separating collinear and neighboring center-of-mass
yields d = 2π/qM = 63 Å. With increasing γ̇, anisotropy
arises in the scattering. It manifests itself by the occur-
rence of symmetric crescent-like peaks in the qe-direction.
Their location in transfer momentum at qMe is slightly
changed with respect to the unsheared solution. This
property will be discussed in detail in Section 4.2. Simulta-
neous to the growth of the anisotropic patterns, the ring-
like structure vanishes progressively. It disappears seem-
ingly at γ̇ = 213 s−1 (Fig. 3f). It should be emphasized
that at higher shear rates (> 100 s−1, Fig. 3d and 3e),
the isotropic ring also shrinks to lower q-values. Starting
from a fully circular pattern at rest, the overall scatter-
ing picture becomes oval-shaped. As documented in refer-
ences [16,33,34], this pattern at γ̇ = 213 s−1 (Fig. 3f)
is qualitatively analogous to the ones obtained from a
surfactant solution that would be nematic at rest (e.g.
φ > 33.0%, see Table 1) and subjected to a gentle shear-
ing. This observation leaded us to interpret the disconti-
nuity of slope in the σ(γ̇)-flow curve in terms of isotropic-
to-nematic transition induced by shear [16]. We will do
the same here, but will present a complete analysis of the
scattering data. Of the utmost importance we will be able
to relate consistently structural and mechanical results.

4 Analysis and discussion

The neutron and rheology data described above are now
analyzed in terms of orientational and translational de-
grees of freedom. Orientational degrees of freedom refers
to the angular distribution function of the micelles with
respect to the flow velocity, and thus aims to describe the
state of alignment of the shear-induced nematic phase.
The translational degrees of freedom, on the other hand
are related to the intermicellar mean distances in one or in
the other phase, and thus reveal their respective volume
fractions.

azimutal angle Ψ (◦)

Fig. 4. Radially integrated intensity I(qM , Ψ) as function of
the azimuthal angle Ψ for the φ = 31.07% CPCl-Hex solution
in deuterated solvent. Shear rates are γ̇ = 0, 13, 32, 64, 126
and 213 s−1 (the constant distribution corresponds to the
rested solution). Here the anisotropy increases with the strain
rate. Continuous lines results from best fit calculations using
equation (1) which assumes two distinct contributions, one
isotropic and one nematic.

4.1 Orientational degrees of freedom

For the first stage of the analysis of the neutron spectra, we
follow the original approach of (I). The SANS spectra are
analyzed in terms of angular distribution of the scattered
intensity I (qM , Ψ). Here Ψ is the azimuthal angle that we
defined as Ψ = (q, qe). Ψ is assumed to increase clockwise
and is taken positive in the upper right quadrant. The
neutron counts are integrated over the elementary sur-
face dqvdqe = qM∆qM∆Ψ , where ∆qM corresponds to the
half-width at half maximum of the scattering in both qv

and qe-directions (∆qM = 0.018 Å−1 and ∆Ψ = 5◦). The
resulting angular dependencies I (qM , Ψ) are displayed in
Figure 4 for different shear rates γ̇ = 0, 13, 32, 64, 126 and
213 s−1). As expected, this azimuthal distribution is con-
stant in the isotropic phase, and as far as the sheared
solution enters the two-phase domain, a periodic function
is obtained with maxima in the qe-directions, for Ψ = 0◦

and 180◦ (only data for Ψ = −90◦ to Ψ = 90◦ are shown
in Fig. 4).

The I (qM , Ψ)-function illustrated in Figure 4 is in-
dicative of the local angular distribution of the surfactant
aggregates since it is computed at a wave vector corre-
sponding to the first maximum in the structure factor. In
(I), the orientational distribution of scattering intensity
was interpreted as the sum of two components, one purely
isotropic (thus constant in the representation of Fig. 4)
and one anisotropic over the whole γ̇-range. In the plateau
regime, these contributions were said to originate from two
different phases that have separated macroscopically: one
isotropic and one nematic phase. From neutron scattering
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solely, such a conclusion cannot be rigorously deduced. Ac-
tually, the growing anisotropy revealed in Figure 4 could
be interpreted as well, in terms of a progressive alignment
of the micellar threads. The crucial experiment on worm-
like micelles under shear has been the in situ birefringence
measurements with the polarized light propagating along
the vorticity direction of a Couette cell [17,19,35]. These
experiments demonstrated unambiguously the coexistence
of two-phase of different birefringence, viscosity and order
parameter. Concentrated CPCl-Hex solutions have been
tested using this powerful technique and were found to
exhibit coexisting phases above γ̇I−N [36]. Considering the
above arguments, we now can express the azimuthal in-
tensity I (qM , Ψ) as:

I (qM , Ψ, γ̇) = II(γ̇) + IN(Ψ, γ̇)

with IN(Ψ, γ̇) = I0
N(γ̇)sinh(b cos2 Ψ). (1)

Here, II(γ̇) denotes the Ψ -independent contribution of the
isotropic phase, I0

N(γ̇) the prefactor to the nematic com-
ponent. The Ψ -dependence of IN(Ψ, γ̇) is taken to be pe-
riodic, and characterized by a unique factor b, which de-
termines the order parameter of the oriented phase. This
analytical expression is slightly different from the one used
in (I). Equation (1) assumes that the shear-induced ne-
matic phase scatters only in the vorticity direction (this
was not the case for the approximate function of (I)). Best
fit calculations using equation (1) are shown in Figure 4
as continuous lines, where II(γ̇), I0

N(γ̇) and b have been
treated as adjustable parameters.

Considering the above set of data related to the ori-
entational degrees of freedom in the two-phase domain,
we will now distinguish three sub-sections: 4.1.1 evolu-
tion of the proportions of each phase in the quasi-plateau
regime, 4.1.2 calculation of the order parameter of the
shear-induced nematic phase and 4.1.3 the derivation of
the ratio of the viscosities of each phase using a relation-
ship between structure and rheology.

4.1.1 Evolution of the proportions of isotropic and nematic
phases in the quasi-plateau regime

The relative proportions of each phase in the two-phase
domain (γ̇ > γ̇I−N) are easily determined from the fit-
ting procedure previously mentioned. They are εI(γ̇) =

II(γ̇)/IT(γ̇) and εN(γ̇) = (1/IT(γ̇))
∫ 2π

0
IN(Ψ, γ̇)dΨ where

IT(γ̇) is the total scattered intensity calculated at each
strain rate. εI(γ̇) and εN(γ̇) are displayed in Figure 5b
as function of γ̇ and have been checked to verify εI(γ̇) +
εN(γ̇) = 1. Figure 5 indicates that the biphasic range is
rather broad, since it extends from γ̇ = 8 s−1 to ∼ 300 s−1.
Actually, at the higher strain rate accessible with the neu-
tron cell (Fig. 3), γ̇ = 213 s−1), nearly 10% of the ini-
tial phase is still present. Such large quasi-plateau regime
have been already reported for wormlike micelles undergo-
ing shear-induced transition (CPCl/Sal [9], CTAB [17,35]
etc.). In order to facilitate the comparison between rheo-
logical and structural data, the original results for stress

Fig. 5. (a) Variation of the steady shear stress and viscosity
σ(γ̇) and η(γ̇) = σ(γ̇)/γ̇ respectively for the CPCl-Hex/D2O
solution (φ = 31.07%) investigated by SANS. (b) Shear rate
dependencies of the relative proportions of each phase (εI(γ̇)
for isotropic, εN(γ̇) for nematic) in the two-phase domain. εI(γ̇)
and εN(γ̇) are determined from the azimuthal distribution dis-
played in Figure 4, according to the procedure explained in
the text. For this solution, the biphasic range extends from
γ̇ = 8 s−1 to ∼ 300 s−1. Note that the discontinuity of slope in
the σ(γ̇)-behaviour in part (a) of the figure coincide well with
the appearance of the anisotropic neutron scattering seen in
part (b) The continuous lines are guides for the eyes.

and viscosity obtained on CPCl-Hex/ D2O (φ = 31.07%)
are shown in Figure 5a (see also (I)). The discontinu-
ity of slope in the σ(γ̇)-behaviour associated with shear-
thinning coincides well with the onset of anisotropy in
SANS (εN(γ̇) 6= 0).

4.1.2 Order parameter of the shear-induced nematic phase

The degree of orientation of the shear-induced nematic
phase can be characterized quantitatively in terms of (lo-
cal) order parameter P2. P2 is the second-order moment of
the orientational distribution function, also defined as the
average of 1/2

(
3 cos2 β − 1

)
over all orientations, where
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Fig. 6. Variation of the nematic order parameter P2 as func-
tion of the shear rate in the quasi- plateau regime for the
shear-induced phase (CPCl-Hex, φ = 31.07%). Its orientation
state remains unchanged at P2 = 0.65± 0.03 in the two-phase
region. Inset: the order parameter as determined from equa-
tion (2) for a nematic phase at φ = 35.25% as function of the
shear stress [33]. This P2(σ)-behavior emphasizes that once
created, the new phase is in a state of orientation compara-
ble to that of a shear-oriented monodomain evidenced in the
liquid-crystalline counterpart.

β is the angle made by a micellar thread with respect to
the flow velocity. Analytical expressions were obtained re-
cently by Deutsch [37], using a technique which enables to
derive nth-order moment of the orientational distribution
function directly from the scattering intensity IN(Ψ, γ̇).
As provided in reference [37], P2 reads:

P2 = 1−
3

2Z

∫ π/2

0

IN(Ψ, γ̇)

×

[
sin2 Ψ + sinΨ cos2 Ψ ln

(
1 + sinΨ

cosΨ

)]
dΨ (2)

where Z =
∫ π/2

0
IN(Ψ)dΨ . Contrary to what has been

claimed in recent reports [38], equation (2) provided re-
liable results, especially on the Maier-Saupe distribution
function for which the order parameters are tabulated and
known. P2-data of the shear-induced nematic phase are
shown in Figure 6 as function of the shear rate. Within
the experimental accuracy, P2(γ̇) remains constant in the
quasi-plateau regime at P2 = 0.65 ± 0.03. Figure 5 indi-
cates that the orientational distribution function of the
aggregates with respect to the flow is not affected by
the increasing rate. Similar conclusions were drawn in (I),
though no estimation of the order parameters was made.

In (I), the constancy of the distribution function in
the quasi-plateau regime was argued to be a strong indi-
cation of a first-order phase transition that is induced by
shear. Two phases of different orientational order parame-
ters were coexisting above γ̇I−N. And thus, the shear rate
was just the control parameter that adjusts the propor-
tion of each phase (as the volume does it in the liquid-gas

transition). Such a conclusion is actually valid for true
stress plateau, i.e. σ(γ̇) = σI−Nγ̇

0. True stress plateaus
have been observed in several viscoelastic surfactants, e.g.
CPCl-NaSal [2,9,24,25], CTAB [35] etc., but not in the
CPCl-Hex solutions we are studying. As shown in Table 2
and in Figure 5, the stress continues to increase in the
quasi-plateau region. And so should be the state of orien-
tation of the nucleated nematic phase.

The apparent contradiction between a stress that
scales with σ ∼ γ̇0.29 (we are dealing with the deuter-
ated solution) and a constant P2 can be solved, taking
into account the data recently reported on the liquid-
crystalline mesophase of CPCl-Hex (in a nematic state
at φ = 35.25%) [33]. The shear flow properties of nematic
wormlike micelles are complex, and their study is out of
the scope of the present paper. In reference [33], it was
shown that the order parameter of nematic wormlike mi-
celles increases with shear rate, starting in the texture
region at P2 = 0.45 (γ̇ < 1 s−1) and leveling off in the
monodomain region around P2 = 0.7 (γ̇ > 50 s−1). Here,
we assume that the nematic phases of wormlike micelles
induced by increasing either shearing or concentration are
similar [16,33,34]. In the inset of Figure 6 we have recon-
structed the evolution of the order parameter as function
of the shear stress for the nematic solution at φ = 35.25%.
Note that in [33], measurements of both shear stress and
order parameter were originally performed versus strain
rates. For the shear-induced I−N transition, the shear
stress σI−N at the onset of quasi-plateau regime is 46 Pa
(indicated in the inset of Fig. 6). This relatively high value
of the stress corresponds, for the liquid-crystalline coun-
terpart, to a nearly oriented nematic monodomain with
an order parameter P2 = 0.66. The agreement between
this latter value and that of the order parameter of the
shear-induced nematic phase (P2 = 0.65 ± 0.03, Fig. 6)
is excellent. We can then conclude that in the coexisting
region of the I−N transition, the nematic induced-phase is
already strongly oriented. These findings justify a posteri-
ori the approach in terms of orientational order parameter
given by equation (2), since this latter equation is not valid
for textural materials. Moreover, the hypothesis of shear-
induced tumbling can be excluded [34]. In conclusion, we
are able to explain why the orientational distribution (and
so P2) does not change noticeably while σ(γ̇) does.

4.1.3 Ratio of the isotropic and nematic viscosities
as deduced from a relationship between orientational
order and rheology

As revealed by flow birefringence experiments in the quasi-
plateau regime [17,18,35], macroscopic layers of isotropic
and nematic wormlike micelles coexist. Let us denote ηI

and ηN their respective viscosities. For γ̇ > γ̇I−N and
σ > σI−N, two conservation laws can be postulated. In a
controlled strain rate experiment where a macroscopic rate
γ̇ is applied to the solution, the shear stress is a continuous
variable along the gradient direction, and thus identical in
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Fig. 7. Comparison between results obtained from the struc-
ture and from the rheology of CPCl-Hex solution in the two-
phase region. The ratio γ̇/σ(γ̇) deduced from the flow curve
(as in Fig. 2) is plotted versus the proportion of nematic
induced phase εN(γ̇) (shown in Fig. 5). According to equa-
tion (5), the straight line enables to estimate the viscosity ra-
tio α = ηI/ηN between the isotropic and nematic phases. We
found α ∼ 10−20, depending on the constraint imposed at
εN(γ̇)→ 0 (see text).

each phase:

σ(γ̇) = ηIγ̇I = ηNγ̇N (3)

where γ̇I and γ̇N are the strain rates experienced by the
disordered isotropic and oriented nematic phase, respec-
tively. Both γ̇I and γ̇N have first to obey the constraint
imposed by the macroscopic rate, but also depends on the
relative amount of each phase through the relation:

γ̇ = εI(γ̇)γ̇I + εN(γ̇)γ̇N. (4)

Contrary to references [9,25] where attention was paid to
the transient rheology, we focus here on the stationary
state of shearing. Removing γ̇I and γ̇N from equations (3)
and (4) yields a linear expression of the ratio γ̇/σ(γ̇) versus
εN(γ̇):

γ̇

σ(γ̇)
=

1

ηI
(1 + (α− 1) εN(γ̇)) . (5)

It should be noticed that since the stress is still increas-
ing in the biphasic state, both viscosities ηI and ηN, and
so, their ratio α are in principle depending on the macro-
scopic applied rate. Equation 5 enables to compare data
received from rheology and neutron scattering, namely the
measured shear stress for a given applied rate and the pro-
portion of nematic phase, respectively. This comparison is
provided in Figure 7 for CPCl-Hex at φ = 31.07%. The
straight line in Figure 7 emphasizes the linearity of γ̇/σ(γ̇)
versus εN(γ̇) over a rather wide γ̇-range (up to ∼ 100 s−1).
The fitting parameters are the viscosity of the isotropic
phase at γ̇I−N, ηI (γ̇I−N) = 14 Pa s), and the viscosity ratio

Fig. 8. Wave-vectors qMv and qMe at the maximum neutron
intensity observed in the velocity and vorticity directions re-
spectively for CPCl-Hex/ D2O (φ = 31.07%). Above γ̇I−N, the
maximum wave-vectors split into two distinct behaviors: qMe
rises to an almost constant value around 0.102 Å−1 whereas
qMv decreases by about 10%. The continuous lines are guides
for the eyes.

α = 23. The extrapolated value of γ̇/σ(γ̇) at εN(γ̇) = 0 is
slightly lower than the inverse static viscosity of the rested
solution (η0 = 6.7 Pa s, see Tab. 2). When on the contrary
we force the ordinate at origin to be 1/η0, the adjustments
of equation (4) to the neutron data is less impressive than
in Figure 7, and the viscosity ratio is lowered to α = 10.
The main result of Figure 7 is that the viscosity of the
nematic phase is ∼ 10−20 times lower than the one of the
isotropic phase. Such values are in qualitatively agreement
with the estimations based on the respective flow curves
of isotropic and nematic phases. Related to the linearity
observed in Figure 7, one can also conclude that even if
the viscosities of each phase are (most likely) varying with
strain rate, their ratio α is constant up to ∼ 100 s−1. We
have no explanation for this phenomenon.

4.2 Translational degrees of freedom

We now turn to the shear rate evolution of the position
in wave vectors of each contribution. From Figure 3, we
have seen that the isotropic ring-like pattern shrinks to
lower wave-vectors when the shear rate is increased. In the
two-phase region, the maximum scattering of the isotropic
phase is assumed to be at best determined in the qv-
direction, at a wave-vector defined by qMv . The nematic
crescent patterns have a maximum in the perpendicular
direction at qMe . qMv and qMe are displayed in Figure 8
in the whole γ̇-range. Above γ̇I−N, the maximum wave-
vectors split into two distinct behaviors: qMe rises to an al-
most constant value, around 0.102 Å−1, and qMv decreases
by about 10%. These behaviors can be interpreted in terms
of variations of the volume fraction of wormlike micelles in
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Fig. 9. Dynamical phase diagram (σ, φI−N) deduced from
the comparison between structure and rheology measurements
on CPCl-Hex wormlike micelles. The concentrations φI and
φN of the two phases in the coexisting range are related to
the positions of these scattering maxima through equation (6)
(see Fig. 8). The concentration of the nematic phase stabilizes
rapidly at φI−N = 0.33, which is the first concentration of a
fully nematic solution at rest (in the D2O-phase diagram). The
remaining isotropic phase dilutes progressively as its propor-
tion vanishes.

each phase. Actually, assuming a locally hexagonal packed
arrangement of the cylindrical micelles, the concentrations
φI and φN are related to the positions of these maxima
through the expression:

φI,N =
r2
c

√
3

8π

(
qMv,e
)2

(6)

where rc is the radius of the micelles (we suppose the
density of the fluid to be 1). In the homogeneous flow
regime, where qM = 0.0996 Å−1 and φ = 0.3107, equa-
tion (6) yields a value for the micellar radius rc = 21.3 Å,
in good agreement with earlier reports [30]. According to
equation (6), the variations of qMe and qMv observed in Fig-
ure 8 indicate first that the concentration of the nematic
phase is slightly higher than that of the isotropic phase.
Actually, and within the error bars, it stabilizes very soon
at φ = φI−N = 0.33, which we recall is the first concentra-
tion of a fully nematic solution at rest (in the D2O-phase
diagram, see Tab. 1). On the other hand, the remaining
isotropic phase dilutes progressively as its proportion van-
ishes. This enables us to draw in Figure 9 a dynamical
phase diagram of CPCl-Hex. There, the mechanical shear
stress deduced from the flow curve is plotted against both
concentrations φI and φN computed using equation (6).
This diagram is strongly reminiscent to the schematical
one in our first report (Fig. 5 in (I)). However, it is now
based on concentrations calculated directly from the neu-
tron data.

Figure 9 can be read as follows. With increasing shear
rate, the stress first grows linearly. At σ = σI−N (indicated

Fig. 10. Comparison of the nematic proportion εN(γ̇) deter-
mined from the analysis of the neutron patterns in terms dis-
tribution of micellar orientations (open symbols) and from the
dynamical phase diagram (σ, φI−N) via the lever rule (Eq. (7),
closed symbols). The continuous line is a guide for the eyes.

by an arrow in Fig. 9), the sheared solution enters the two-
phase domain. The shear-induced nematic phase adopts at
once the concentration corresponding to that of a nematic
state at rest. In order to compensate both increases in φN

and εN, the disordered phase lowers its concentration pro-
gressively. Because of the φI, N(γ̇)-variations above σI−N,
the shear stress continues to increase in the two-phase
region. A true σ-plateau on the contrary would have in-
dicated that the oriented induced phase has a concentra-
tion necessarily identical to the remaining isotropic one.
We thus suggest that a quasi-plateau behavior in the flow
curve of wormlike micelles is the signature of a coupling
between concentration and shearing field.

For a stress in the biphasic region (σ > σI−N), the
lever rule should apply as for equilibrium first-order phase
transition and the proportion of each phase can be again
determined. One has for instance,

εN(γ̇) =
φ− φI(γ̇)

φN(γ̇)− φI(γ̇)
· (7)

Figure 10 proposed a comparison of the nematic propor-
tion determined with two methods. One set of data results
from the analysis in terms distribution of micellar orienta-
tions (the same as in Fig. 5), the second set of data stems
from the dynamical phase diagram of Figure 9 (i.e. using
Eq. (7)). Despite a quite large uncertainty for the latter
data, the agreement is qualitative. The difference could
be due to an overestimation of the nematic proportion de-
rived from the orientational distribution [35]. The assump-
tion which consisted to assert that the anisotropic scatter-
ing results uniquely from the nematic phase is probably
too restrictive. At high shear rates, one could also imagine
that the more viscous phase exhibits some anisotropy (ob-
served e.g. by means of birefringence) which in the spirit
of equation (1) will not be taken into account.
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5 Concluding remarks

Results of Figure 10 enable us to draw a self consistent
picture of the I−N transition in CPCl-Hex surfactant
wormlike micelles. The careful analysis of the neutron data
performed separately in terms of orientational and trans-
lational degrees of freedom provides a unique scenario of
the transition. For that micellar system, there exists a cou-
pling between the velocity gradient (or velocity field itself)
and the volume fraction of micelles. When sheared from
a state at rest above γ̇I−N, the solution exhibits a macro-
scopic phase separation into viscous and fluid layers. This
separation is accompanied by the diffusion of the surfac-
tant molecules from the more viscous to the more fluid
phase. Such a transition driven by a coupling between
the concentration and the flow characteristics has been
treated theoretically by Schmitt et al. [22] and by Olm-
sted and Lu [23]. According to the classification by the first
authors [22], the I−N transition detected in CPCl-Hex
micellar solution is due to a positive flow-concentration
coupling. Concentration fluctuations induce shear stress
fluctuations, which in feedback generate an amplification
of the concentration fluctuations. Finally the flow becomes
inhomogeneous. Sloped plateaus and discontinuous flow
curves related to a shear induced I−N transition have been
found by Olmsted and Lu [23] in concentrated solutions of
rod-like molecules. Of particular interest are the dynamic
phase diagrams in the planes (σ, φ) and (γ̇, φ) proposed
by these authors. The coexistence state of disordered and
nematic rod phases in shear flow is associated to a unique
path (tie line in [23]) between the low and high strain rate
stable branches through a selection criterion. This selec-
tion criterion is not postulated but is contained in the full
inhomogeneous equations of motions. More convincingly,
reference [23] demonstrates explicitly that due to the cou-
pling mentioned above, the plateau is steeper close to the
I−N transition and shallower farther away (see Fig. 2).

Compared to the first report on the I−N transition
which together with reference [15] recognized the relevance
of a combined analysis of structural and mechanical re-
sults, the present paper emphasizes new insights. They
are:

(i) The shear rate dependencies of the relative propor-
tions of each phase in the two-phase region were de-
rived.

(ii) At the onset of the transition, the shear induced
nematic phase is already strongly oriented (order pa-
rameter P2 = 0.66). The orientational state is that
of a nematic monodomain, analogous to what was
found for nematic mesophases of wormlike micelles
subjected to strain rates higher than 50 s−1 (with no
or few textures and defects created by the flow) [33].
Having established that the shear-induced state is
highly oriented, we have solved the apparent con-
tradiction between a constant order parameter in
the two-phase region and an increasing stress in the
quasi-plateau regime.

(iii) Combining rheological data of the shear stress with
the proportions of the nucleated nematics received

from SANS, we have estimated the viscosity ratio of
the coexisting phases, α = ηI/ηN ∼ 10−20.

(iv) A dynamical phase diagram intends to provide a rep-
resentation of the phase behavior as function of the
state of shearing. The mechanical shear stress was
used as a new ordinate axis to describe a given state
of shearing. From the SANS patterns, we have been
able to evaluate the respective concentrations of each
phase at every γ̇ in the two-phase region. And thus,
a purely experimental phase diagram under shear for
these of wormlike micelles has been proposed (Fig. 9).
Besides this analysis in terms of dynamical phase di-
agram, we also evidence a direct coupling between
flow and concentration.
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